Search results for "conditional particle filter"

showing 2 items of 2 documents

Coupled conditional backward sampling particle filter

2020

The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, …

65C05FOS: Computer and information sciencesStatistics and ProbabilityunbiasedMarkovin ketjutTime horizonStatistics - Computation01 natural sciencesStability (probability)backward sampling65C05 (Primary) 60J05 65C35 65C40 (secondary)010104 statistics & probabilityconvergence rateFOS: MathematicsApplied mathematics0101 mathematicscouplingHidden Markov model65C35Computation (stat.CO)Mathematicsstokastiset prosessitBackward samplingSeries (mathematics)Probability (math.PR)Sampling (statistics)conditional particle filterMonte Carlo -menetelmätRate of convergence65C6065C40numeerinen analyysiStatistics Probability and UncertaintyParticle filterMathematics - ProbabilitySmoothing
researchProduct

Conditional particle filters with diffuse initial distributions

2020

Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which are common in statistical applications. We propose a simple but generally applicable auxiliary variable method, which can be used together with the CPF in order to perform efficient inference with diffuse initial distributions. The method only requires simulatable Markov transitions that are reversible with respect to the initial distribution, which can be improper. We focus in particular on random-walk type transitions which are reversible with respect to a uniform init…

FOS: Computer and information sciencesStatistics and ProbabilityComputer scienceGaussianBayesian inferenceMarkovin ketjut02 engineering and technology01 natural sciencesStatistics - ComputationArticleTheoretical Computer ScienceMethodology (stat.ME)010104 statistics & probabilitysymbols.namesakeAdaptive Markov chain Monte Carlotilastotiede0202 electrical engineering electronic engineering information engineeringStatistical physics0101 mathematicsDiffuse initialisationHidden Markov modelComputation (stat.CO)Statistics - MethodologyState space modelHidden Markov modelbayesian inferenceMarkov chaindiffuse initialisationbayesilainen menetelmäconditional particle filtersmoothingmatemaattiset menetelmät020206 networking & telecommunicationsConditional particle filterCovariancecompartment modelRandom walkCompartment modelstate space modelComputational Theory and MathematicsAutoregressive modelsymbolsStatistics Probability and UncertaintyParticle filterSmoothingSmoothing
researchProduct